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    Graph theory and enumerative combinatorics are two branches of mathematical 
sciences that have developed astonishingly over the past one hundred years. It is 
especially important to point out that graph theory employs combinatorial techniques 
to solve key problems of characterization, construction, and enumeration of an 
enormous set of different classes of graphs. This manuscript describes the construction 
of two classes of bigeodetic blocks using balanced incomplete block designs (BIBDs). 
On the other hand, even though graph theory and combinatorics have a close 
relationship, the opposite problem; that is, considering certain graph constructions 
when solving problems of combinatorics, is not common, but perfectly possible. The 
construction of the second class of bigeodetic blocks described in this manuscript 
represents an example of how graph theory could somehow give a clue to the 
description of a problem of existence in combinatorics. We refer to the problem of 
existence for biplanes. The content development of this research also suggests the 
possibility of a connection between the mentioned construction, the Bruck-Ryser-
Chowla theorem, and the problem of existence for biplanes. 
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1 Introduction 
 
     A balanced incomplete block design (or simply a block design) on a set S with          
⎜S ⎜ = n, is a family of subsets B1, B2,…,Bb of  S called blocks such that: 
(a)   ⎜Bi ⎜ = k, 1 ≤  i  ≤  b. 
(b)   If x ∈ S, then x belongs to exactly r blocks Bi. 
(c)   If x, y are distinct elements of S, then {x, y} is contained in exactly λ blocks.  
This block design is denoted by (b, n, r, k, λ). 
   Just like any other combinatorial structure, block designs are defined in terms of certain 
parameters whose values determine the answer to the question of existence; that is, which 
values of these parameters produce the configuration in question and which do not. Given 
a (b, n, r, k, λ)-design, there are necessary conditions that its parameters must satisfy, 
namely, bk = nr and  r(k - 1) =  λ(n - 1). 
     A design with b = n is called symmetric. In such a design r = k and hence such 
structure is called (n, k, λ)-design. For symmetric designs, there is an additional 
restriction for their existence [4, Theorem 3.1]. 
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Theorem 1. (Bruck-Ryser-Chowla Theorem) Let n, k, λ be integers for which there 
exists a symmetric (n, k, λ)-design. If n is even, then k - λ equals a perfect square. If n is 
odd, then the Diophantine equation 

x2 = (k - λ)y2 + (-1)(n - 1)/2λz2 

has a solution in integers x, y, z not all zero. 
 
   The conditions previously described on the parameters of a block design are necessary, 
but not sufficient. It means that we can use them to rule out the existence of a block 
design for certain groups of parameters. However, being given the values of the 
parameters which satisfy the conditions previously mentioned does not guarantee the 
existence of a block design with those parameters. There are many groups of possible 
parameters for which the existence problem has not been settled. 
      In this research a graph is undirected, without loops or multiple edges. Bigeodetic 
graphs were defined by Srinivasan [5, p.102] as graphs in which each pair of nonadjacent 
vertices has at most two paths of minimum length between them. K-geodetic graphs have 
been defined in [1, p. 188] as graphs in which each pair of nonadjacent vertices has at 
most k paths of minimum length between them. Thus, a k-geodetic graph is geodetic 
when k = 1, bigeodetic when k = 2, trigeodetic when k = 3, and so on. A block is a graph 
with vertex connectivity > 1. In [1, pp. 190-201], a general study of k-geodetic graphs has 
been performed and bigeodetic blocks have been considered there as a particular case of 
k-geodetic graphs. 
   A cover of a graph G is a set {G1, G2,...,Gm} of complete subgraphs of G such that      
G1 ∪ G2 ∪ ... ∪ Gm = G. A cover of G is called a Θ-cover if any two elements of the 
cover are edge-disjoint. 
     Let G be a graph having vertices v1, v2,...,vn. Let A = {G1, G2,..., Gm} be a cover of G, 
where , 1 ≤ i ≤ m. For each i, 1 ≤ i ≤ m, take new vertices 

 and construct a complete graph K(Gi) on these vertices. Take n new vertices 

v10, v20,...,vn0 and connect  vil i to vil 0  for  1 ≤  l  ≤ ji, 1 ≤ i ≤ m. The resulting graph is 
denoted G*(A). 
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     Consider a (b, n, r, k, λ)-design on a set S = {x1, x2,...,xn}. Let Kn be a complete graph 
with vertex set {x1, x2,...,xn} and Gi be a complete graph on vertex set of Bi, 1≤ i ≤ b. 
Clearly, A = {G1, G2,...,Gb} is a cover of  Kn. Construct graph Kn*(A) and denote it as 
Kn*(r, k, λ). This is a k-connected, biregular block with degree sequence (r, k). It has    
n(r + 1) vertices and nr(k + 1)/2 edges. In Figure 2, K7*(6,3,2) is constructed using  the 
blocks of a (14,7,6,3,2)-design. 
    The described procedure to generate graph Kn*(r, k, λ) and the following theorem with 
its respective corollary are taken from [5, pp. 103-107]. 
 
Theorem 2.  Let μ = max[max(⎜Bi  ∩ Bj⎟ : i, j = 1,...,b, i ≠ j), λ]. Any pair of nonadjacent 
vertices of Kn*(r, k, λ) has at most μ distinct paths of minimum length between them. The 
diameter of Kn*(r, k, λ) is 4 or 5 according as Bi  ∩ Bj ≠ ∅ for every i, j or not. 
 
Corollary 1. If (b, n, r, k, λ) is a symmetric design, then in Kn*(r, k, λ) there are at most  
λ  paths of minimum length between each pair of vertices. 
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2 Results 
 
Next we present two constructions of bigeodetic blocks using block designs (Theorem 3 
and Assertion 1). 
   The construction described in Assertion 1 has a special connotation because even 
though it describes a simple observation about the existence behavior pattern of the 
employed symmetric ((n2+n+2)/2, n+1, 2)-designs in a very short interval of integer       
values, section 3 of this manuscript suggests that this simple observation could not be just 
a coincidence and could give a clue to the description of a more general problem of 
existence. 
Theorem 3. For every n ≡ 0 or 1 (mod 3), n ≥ 4, there exists a bigeodetic block on n2 
vertices with diameter 4 or 5, with vertex connectivity 3 and degree sequence (n-1, 3). 
 
Proof: When n ≡ 0 or 1 (mod 3), n ≥ 4, there exists an (n(n-1)/3, n, n-1, 3, 2)-design on a 
set S [2, Theorem 15.4.5]. Thus, taking Gi to be a complete graph on vertices of Bi, 1≤ i ≤ 
n(n-1)/3, graphs G1,..., Gn(n-1)/3 form a cover of the complete graph Kn on vertex set S. 
Construct graph Kn*(n-1, 3, 2). This graph has n2 vertices. By Theorem 2 this is a 
bigeodetic graph of diameter 4 or 5 according as Bi  ∩ Bj ≠ φ for every i, j, i ≠ j or not. It 
is easy to observe that Kn*(n-1, 3, 2) has degree sequence (n-1, 3) and is 3-connected for 
n ≥ 4. 

Next we give the blocks of (10, 6, 5, 3, 2) and (14, 7, 6, 3, 2) designs which are used to 
construct the bigeodetic blocks shown in Figures 1 and 2. 

(i) {x1, x2, x4}, {x1, x2, x3}, {x3, x4, x5}, {x2, x4, x5}, {x2, x5, x6}, {x1, x5, x6},         
{x2, x3, x6}, {x1, x3, x5}, {x1, x4, x6}, {x3, x4, x6}. 

(ii) {x1, x2, x4}, {x1, x2, x3}, {x3, x4, x6}, {x3, x4, x5}, {x2, x5, x6}, {x3, x6, x7},             
{x1, x6, x7}, {x1, x4, x7}, {x2, x3, x7}, {x1, x3, x5}, {x2, x5, x7}, {x2, x4, x6},             
{x1, x5, x6}, {x4, x5, x7}. 

 
 
 
 

 
 
  
 
 

 

 

 

 
 

Fig. 1. A bigeodetic block generated by a (10, 6, 5, 3, 2)-design. 
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Fig. 2. A bigeodetic block generated by a (14, 7, 6, 3, 2)-design. 
 
Assertion 1.  For every n ≡ 1 or 2 (mod 4), 2 ≤ n ≤ 10, such that (n-1) is a perfect square 
or  n ≡ 0 or 3 (mod 4), 3 ≤ n ≤ 12, such that (n-1) is a prime power, there exists an         
(n+1)-regular, (n+1)-connected bigeodetic block of diameter 4. 
 
Proof: When n ≡ 1 or 2 (mod 4), 2 ≤ n ≤ 10, such that (n-1) is a  perfect square or            
n ≡ 0 or 3 (mod 4), 3 ≤ n ≤ 12, such that (n-1) is a prime power, there exists a symmetric 
block design ((n2+n+2)/2, n+1, 2) on a set S with blocks Bi, 1 ≤ i ≤ (n2+n+2)/2 (Section 3 
of this manuscript lists all symmetric ((n2+n+2)/2, n+1, 2)-designs so far found. Note that 
they obey the “simple pattern” of existence mentioned at the beginning of this proof). Let 
G be a complete graph on vertex set S, and Gi be a complete graph on vertex set Bi, 1 ≤ i ≤ 
(n2+n+2)/2. G1,...,G(n

2
+n+2)/2 form a cover of G. Construct graph G*

(n
2
+n+2)/2(n+1, n+1, 2). 

This graph is an (n+1)-regular, (n+1)-connected one and has (n2+n+2)(n+2)/2 vertices. 
By Corollary 1 this is a bigeodetic block. Since any two blocks of a design ((n2+n+2)/2, 
n+1, 2) have two common elements, the diameter of G*

(n
2
+n+2)/2(n+1, n+1, 2) is 4. 

 
Next we give the blocks of (4, 4, 3, 3, 2) and (7, 7, 4, 4, 2) designs which are used to 

construct the bigeodetic blocks shown in Figures 3 and 4. 
 
(i) {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}. 
 
(ii) {x1, x2, x3, x4}, {x1, x3, x5, x7}, {x1, x4, x5, x6}, {x1, x2, x6, x7}, {x2, x3, x5, x6},       

{x2, x4, x5, x7}, {x3, x4, x6, x7}. 
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Fig. 3. A bigeodetic block generated by a (4, 4, 3, 3, 2)-design. 
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Fig. 4. A bigeodetic block generated by a (7, 7, 4, 4, 2)-design. 
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Corollary 1. If (b, n, r, k, 2) is a block design, then Kn*(r, k, 2) is a bigeodetic graph of 
diameter either 4 or 5. 

Srinivasan, Opatrny, and Alagar [5, p. 111] considered that it is possible to construct              
n-regular, k-connected bigeodetic blocks of diameter d, where k, n, d ≥ 2, k ≤ n. 

They have denoted this class of blocks as B(k, n, d) and have posed the following 
problem: 

 
Is class B(k, n, d) nonempty for every k, n, d ≥ 2, k ≤ n? 

 
Assertion 2. For every n ≡ 1 or 2 (mod 4), 2 ≤ n ≤ 10, such that (n-1) is a perfect square 
or   n ≡ 0 or 3 (mod 4), 3 ≤ n ≤ 12, such that (n-1) is a prime power, class B(n+1, n+1, 4) 
is nonempty. 
 
3 Conclusions 
 
Similar constructions to those ones described in Theorem 3 and Assertion 1 for 
bigeodetic blocks can be formulated for trigeodetic blocks using (b, n, r, k, 3)-designs. 
Thus, when n ≡ 1 (mod 2), n ≥ 5, there exists an (n(n-1)/2, n, 3(n-1)/2, 3, 3)-design        
[2, Theorem 15.4.2]. In the same way, when n ≡ 0 or 2 (mod 3), 3 ≤ n ≤ 14, n ≠ 12, there 
exists a symmetric  ((n2+n+3)/3, n+1, 3)-design, namely, (5, 4, 3), (11, 6, 3), (15, 7, 3), 
(25, 9, 3), (31, 10, 3) [2, Appendix 1], (45, 12, 3), (71, 15, 3) [3, p. 105], which is called a 
triplane. 
     For any fixed integer value λ ≥ 2, the question of whether there exists an infinite 
number of symmetric (n, k, λ)-designs is unresolved. In particular, when λ = 2, such a 
design is called a biplane and there exists only a few known examples, namely, (4,3,2), 
(7,4,2), (11,5,2), (16,6,2), (37,9,2), (56,11,2), and (79,13,2). The first two biplanes are 
here used to generate two bigeodetic blocks (see Figures 3 and 4). Ryser [4, pp.114-115] 
proved that if in a symmetric (n, k, λ)-design n is odd and (k, λ) = 1 where (k, λ) denotes 
the positive greatest common divisor of k and λ, then (k - λ, λ) = 1 and the Diophantine 
equation x2 = (k - λ)y2 + (-1)(n - 1)/2λz2 associated to the Bruck-Ryser-Chowla theorem has 
a solution in integers x, y, and z, not all zero. It is evident that for n ≡ 0 or 3 (mod 4) with 
n > 3 and (n-1) a prime power, (n2+n+2)/2 is odd and ((n2+n+2)/2, n+1, 2)-biplanes 
satisfy the conditions established by Ryser. As a result, when changing n, k, and λ in      
x2 = (k - λ)y2 + (-1)(n - 1)/2λz2 by (n2+n+2)/2, n+1, and 2, respectively, a Diophantine 
equation with a solution in integers x, y, and z, not all zero is generated. Consequently, 
for n ≡ 0 or 3 (mod 4) with n > 3 and (n-1) a prime power, (n2+n+2)/2 is odd and 
((n2+n+2)/2, n+1, 2)-biplanes satisfy the necessary condition established in Theorem 1 
for their existence.  
    It has been conjectured that only finitely many symmetric designs exist for any fixed   
λ > 1. Assuming that this is true, one could speculate if for a given finite integer interval, 
biplanes and their existence respond to the same simple pattern of behavior described in 
the construction of Assertion 1’s bigeodetic blocks.  
    Assume that n belongs to a finite interval of integer values [2, m], m a fixed integer,   
m ≥ 12. Could it be possible that being n ≡ 1 or 2 (mod 4), 2 ≤ n < m, such that (n-1) is a 
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perfect square or n ≡ 0 or 3 (mod 4), 3 ≤ n ≤ m, such that (n-1) is a prime power, there 
exists a symmetric block design ((n2+n+2)/2, n+1, 2)?   
    Note that the answer to this question is affirmative for m = 12. 
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